با همکاری مشترک دانشگاه پیام نور و انجمن روانشناسی اجتماعی ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری روان‌شناسی تربیتی، دانشکده علوم تربیتی و روان‌شناسی، دانشگاه شهید چمران اهواز، اهواز، ایران.

2 استاد گروه روان‌شناسی، دانشکده علوم تربیتی و روان‌شناسی، دانشگاه شهید چمران اهواز، اهواز، ایران.

3 استادیار گروه روان‌شناسی، دانشکده علوم تربیتی و روان‌شناسی، دانشگاه شهید چمران اهواز، اهواز، ایران.

4 دانشیار گروه روان‌شناسی، دانشکده علوم تربیتی و روان‌شناسی، دانشگاه شهید چمران اهواز، اهواز، ایران.

چکیده

مقدمه: هدف پژوهش حاضر تحلیل چندسطحی رابطه هیجانات پیشرفت منفی، ادراک مهارت‌های تشخیصی معلم، سطح چالش‌انگیزی کلاس و کیفیت تدریس معلم با عملکرد ریاضی در دانش‌آموزان پایه نهم بود. روش: پژوهش از نوع همبستگی و به صورت تحلیل چندسطحی بود. جامعه آماری این پژوهش، کلیه دانش‌آموزان پایه نهم پسر و دختر دوره متوسطه اول شهرستان کهگیلویه در سال تحصیلی 1402-1401 بود که از میان آنها، نمونه ای 1000 نفری (500 پسر و 500 دختر) به روش تصادفی چندمرحله‌ای انتخاب شد. برای سنجش متغیرهای پژوهش، از پرسشنامه ارزیابی کلاس گارتنر (2010)، مقیاس‌ ادراک دانش‌آموزان از فعالیت‌های کلاسی جنتری و اسپرینگر (2002)، مقیاس کیفیت تدریس کریاکیدز و همکاران (2000)، پرسشنامه هیجانات پیشرفت پکران و همکاران (2005) و نمرات نوبت اول درس ریاضی دانش آموزان استفاده شد. داده‌ها به کمک مدل‌سازی خطی سلسله‌مراتبی (HLM) تحلیل شد. یافته‌ها: تحلیل چندسطحی نشان داد متغیرهای هیجانات پیشرفت منفی و میانگین هیجانات پیشرفت منفی کلاس، به طور منفی و متغیرهای ادراک مهارت‌های تشخیصی معلم، سطح چالش‌انگیزی کلاس و کیفیت تدریس معلم به طور مثبت، پیش‌بین عملکرد ریاضی بودند. تعامل متغیرهای سطح 2 با شیب رابطه هیجانات پیشرفت منفی و عملکرد ریاضی معنی‌دار بود. نتیجه‌گیری: در مجموع نتایج تحلیل چندسطحی در این پژوهش نشان داد عملکرد ریاضی دانش‌آموزان وابسته به کاهش هیجانات پیشرفت منفی آنها و میانگین هیجانات پیشرفت منفی کلاس و افزایش مهارت‌های تشخیصی معلم، سطح چالش‌انگیزی کلاس و کیفیت تدریس معلم می‌باشد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Multilevel Analysis of the Relationship between Negative Achievement Emotions, Perception of Teachers' Diagnostic Skills, Challenging Level of Class and Quality of Teacher Teaching with Math Performance in Ninth Grade Students

نویسندگان [English]

  • Arash Akhash 1
  • Manijeh Shehni Yailagh 2
  • Askar Atash Afrouz 3
  • Morteza Omidian 4

1 Ph.D. Student Educational Psychology, Department of Psychology , Faculty of Education Sciences and Psychology, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

2 Professor, Department of Psychology, Faculty of Education Sciences and Psychology, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

3 Assistant Professor, Department of Psychology, Faculty of Education Sciences and Psychology, Shahid Chamran University of Ahvaz,, Ahvaz, Iran.

4 Associate Professor, Department of Psychology, Faculty of Education Sciences and Psychology, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

چکیده [English]

Introduction: This multilevel analysis research aims to investigate the relationship negative achievement emotions, perception of teachers’ diagnostic skills, challenging level of the class and quality of teacher’s teaching with math performance in ninth-grade students. Method: The research method was a correlational type, namely multilevel analysis. The statistical population of this research was all ninth-grade male and female students of first secondary school in Kohgiluyeh city, in Iran, in the academic year of 1401-1402, among them, a sample of 1000 people (500 male and 500 female) was selected by multistage random sampling method. Pekran et al.'s achievement emotions questionnaire (2005), Gartner's Class Evaluation Questionnaire (2010), Gentry and Springer's Scale of Students' Perception of Classroom Activities (2002), Kyriakides et al.'s Teaching Quality Scale (2000) and students' grades of the first semester of math lessons were used to measure the variables of the research. Data were analyzed using Hierarchical Linear Modeling (HLM) method. Results: The results of the multilevel analysis showed that variables of level 1 (negative achievement emotions) and level 2 (average negative achievement emotions of class) negatively and significantly, and variables of level 2 (perception of teacher's diagnostic skills, challenging level of class and quality of teacher’s teaching) positively and significantly, were predicting math performance of students. The interactions of level 2 variables with the slope of the relationship between negative achievement emotions and math performance were significant. Conclusion: In sum, the results of the multilevel analysis in this research showed that students' math performance is related to the reduction of their negative achievement emotions and average negative achievement emotions of class, and the increase of the perception of teachers’ diagnostic skills, challenging level of class and the quality of the teacher’s teaching.

کلیدواژه‌ها [English]

  • Achievement emotions
  • Challenging level
  • Diagnostic skills
  • Teaching Quality
Altermatt, E. R., & Pomerantz, E. M. (2005). The implications of having high-achieving versus low-achieving friends: A longitudinal analysis. Social Development, 14, 61-81.
Artelt, C., & Rausch, T. (2014). Accuracy of teacher judgments. In S. Krolak-Schwerdt, S. Glock, & M. Bohmer (Eds.). Teachers' professional Development (pp. 27-43). Rotterdam, The Netherlands: Sense Publishers.
Behrmann, L., & Souvignier, E. (2013). The relation between teachers’ diagnostic sensitivity, their instructional activities, and their students’ achievement gains in reading. Zeitschrift für Padagogische Psychologie, 27(4), 283-293. https://doi.org/10.1024/1010 0652/a000112.
Brunner, M., Anders, Y., Hachfeld, A., & Krauss, S. (2013). The diagnostic skills of mathematics teachers. In M. Kunter, J. Baumert, & W. Blum, http://dx.doi.org /10.1007/978-1-4614-5149-5_11.
Bush, A. M. (2006). What Comes Between Classroom Community and Academic Emotions: Testing a Self-Determination Model of Motivation in the College Classroom. (Doctoral dissertation, The University of Texas at Austin, 2006). Proquest Dissertations and Theses.
CherahiKhah, Z., Arabzadeh, M., & Kadivar, P. (2015). The role of academic optimism, academic emotions and school well-being in students' mathematical performance. Health psychology Bulletin, 1(3), 11-20. [In Persian]
Clements, D. H. (2002). Linking research and curriculum development. In L.D. English (Ed.), Handbook of international research in mathematics education (pp. 599-629). Mahwah, NJ: Lawrence Erlbaum Associates.
Csikszentmihalyi, M. (2014). Flow and the foundations of positive psychology.Dordrecht, The Netherlands: Springer.
Cunningham, A. E., Perry, K. E., Stanovich, K. E., & Stanovich, P. J. (2004). Disciplinary knowledge of K-3 teachers and their knowledge calibration in the domain of early literacy. Annals of Dyslexia, 54(1), 139-167.
Delavar, A., Ghorbani, M., Borjali, A., & Asadzhde, H. (2011). Investigating effective motivational and attitudinal factors In predicting the progress of mathematics, in order to formulate a structural model for second grade students High school. Research in Educational Systems, 4(6), 9-26. [In Persian]
Felicidad, T., Villavicencio, T., Alelan, B., & Bernardo, D. (2012). Positive academic emotions moderatethe relationship between self-regulation and academic achievement. British Journal of Educational Psychology, 83(2), 329-340.
Gabriele, A. J., Joram, E., & Park, K. H. (2016). Elementary mathematics teachers’ judgment accuracy and calibration accuracy: Do they predict student mathematics achievement outcomes? Learning and Instruction, 45, 49-60. https://doi.org/10.1016 /j.learninstruc.2016.06.008.
Gartner, H. (2010). Wie Schülerinnen und Schuler ihre Lernumwelt wahrnehmen. Ein Vergleich verschiedener Maße zur Ubereinstimmung von Schülerwahrnehmungen [How students perceive their learning environment: A comparison of four indices of interrater agreement].
Gentry, M., Gable, R. K., & Rizza, M. G. (2002). Student perceptions of classroom activities: Are there grade-level and gender differences. Journal of Educational Psychology, 94, 539-544.
Gentry, M., & Owen, S. V. (2004). Secondary student perceptions of classroom quality: Instrumentation and differences between advanced/honors and nonhonors classes. Journal of Secondary Gifted Education, 16(1), 20-29.
Gentry, M., & Springer, P. (2002). Secondary student perceptions of their class Activities regarding meaningfulness, challenge, choice, and appeal: An initial instrument validation study. Journal of Secondary Gifted Education, 13, 192-204.http://dx.doi.org/10.4219/jsge-2002-381.
Goetz, T., Ludtke, O., Nett, U. E., Keller, M. M., & Lipnevich, A. A. (2013). Characteristics of teaching and students' emotions in the classroom: Investigating differences across domains. Contemporary Educational Psychology, 38(4), 383-394.
Hair, J. F., Black, W., Babin, B., & Anderson, R. E. (2009). Multivariate data analysis. New Jersey, NJ: Prentice Hall. Zeitschrift fur Padagogische Psychologie, 24(2), 111-122. http:// dx.doi.org /10.1024/10100652/a000009.
Heck, R. H., Thomas, S. L., & Tabata, L. N. (2014). Multilevel and Longitudinal Modeling with IBM SPSS. Second Edition. Published in New York by Routledge.
Holm, M. E., Bjorn, P. M., Laine, A., Korhonen, J., & Hannula, M. S. (2020). Achievement emotions among adolescents receiving special education support in mathematics. Learning and Individual Differences, 79 (2020), 101- 851. https://doi.org/10.1016/j.lindif.2020.101851.
Kadivar, P., Farzad, W., Kavosian, J., & Nikdel, F. (2010). Validation of Pakran's academic emotions questionnaire. Educational Innovations Quarterly, 8(32), 7-32. [In Persian]
Kaufmann, E. (2020). How accurately do teachers judge students? Re-analysis of Hoge and Coladarci (1989) meta-analysis. Contemporary Educational Psychology, 63, 101902.
Kilday, C. R., & Kinzie, M. B. (2009). Analysis of instruments that measure the quality of mathematics teaching in early childhood. Early Childhood Education Journal, 36, 365-372.
Kolovou, D., Naumann, A., & Hochweber, J. (2021). Content-specificity of teachers’ judgment accuracy regarding students’ academic achievement. Teaching and Teacher Education, 100, 103-298.
Kunter, M., Klusmann, U., Baumert, J., Richter, D., Voss, T., & Hachfeld, A. (2013). Professional competence of teachers: Effects on instructional quality and student development. Journal of Educational Psychology, 105(3), 805-820. http://dx.doi.org /10.1037/a0032583.
Kyriakides, L., Campbell, R. J., & Gagatasis, A. (2000). The significance of the classroom effect in primery school: An application of Creemers’ comprehensive model of educational effectiveness. School Effectiveness and School Improvement, 11, 501-529.
Larocque, L. M. (2008). Assessing perceptions of the environment in elementary classrooms: The link with achievement. Journal of the Association of Educational Psychologists, 24, 289-305.
Latifian, M., & Khoshbakht, F. (2011). Investigating the predictive power of the teacher's teaching quality and classroom atmosphere for learning mathematics with the mediation of motivational beliefs and self-regulation learning strategies in fifth grade students. Educational Sciences of Shahid Chamran University of Ahvaz, 6(2), 107-126. [In Persian]
Lazarides, R., & Buchholz, J. (2019). Student-perceived teaching quality: How is it related to different achievement emotions in mathematics classrooms? Learning and Instruction, 61, 45-59.
Loibl, K., Leuders, T., & Dorfler, T. (2020). A framework for explainingteachers’ diagnostic judgements by cognitive modeling (DiaCoM). Teaching and Teacher Education, 91, 103059.
Lovat, T. J. & Toomey, R. (Eds.) (2007). Values education and quality Teaching: Tthe double helix effect: Sydney, David Barlow Publishing.
Magen, S. (2017). Quality of Teaching and Dropout Risk: A Multi-Level Analysis. Journal of Education for Students Placed at Risk (JESPAR), 22(1), 9-24.
Mass, C. J. M., & Hox, J. J. (2004). The influence of violations of assumptions on multilevel parameter estimates and their standard errors. Computational Statistics and Data Analysis, 46, 427-440.
Naqsh, Z., & RamezaniKhamsi, Z.(2017). Perception of classroom learning environment and academic emotions: Multilevel analysis of math class. Quarterly Journal of Applied Psychological Research, 8(1), 127-141. [In Persian]
Nicoleta, S. (2011). Teachers for the knowledge society. How can technology improve math learning process. Procedia Social and Behavioral Sciences, 11, 170-174.
Peisner-Feinberg, E. S., Burchinal, M. R., Clifford, R. M., Culkin, M. L., Howes, C., & Kagan, S. L. (2001). The relation of preschool child-care quality to children’s cognitive and social developmental trajectories through second grade. Child Development, 72, 1534-1553.
Pekrun, R. (2006). The control-value theory of achievement emotions: Assumptions, corollaries, and implications for educational research and practice. Educational Psychology Review, 18(4), 315-341.
Pekrun,R.(2009). Emotion at School. In K. R. Wentzel & A.Wigfield (Eds.) Handbook of Motivation at school (PP.575-604). New York: Routledge.
Pekrun, R., Goetz, T., Frenzel, A. C., Barchfeld, P., & Perry, R. P. (2011). Measuring emotions in students' learning and performance: The Achievement Emotions Questionnaire (AEQ). Contemporary Educational Psychology, 36(1), 36-48. http://dx.doi.org/10.1016/j. cedpsych.2010.10.002
Pekrun, R., & Perry, R. P. (2014). Control-value theory of achievement emotions. In R. Pekrun & L. Linnenbrink-Garcia (Eds.). International handbook of emotions in education (pp. 120-141). New York, NY: Routledge.
Pekrun, R., Lichtenfeld, S., Marsh, H. W., Murayama, K., & Goetz, T. (2017). Achievement emotions and academic performance: Longitudinal models of reciprocal effects. Society for Research Child Development, 5(88), 1653-1670.  DOI:10.1111/cdev.12704.
Pekrun, R., Goetz, T., & Perry, R. P. (2005). Achievement Emotions Questionnaire (AEQ), Users Mannal, Mannal Version 2005.
Pekrun, R., Goetz, T., Titz, W., & Perry, R. P. (2002). Academic emotions in stu-dents’ self-regulated learning and achievement: a program of qualitative and quantitative research. Educational psychologist, 37(2), 91–105.
Pekrun, R., Murayama, K., Marsh, H. W., Goetz, T., & Frenzel, A. C. (2019). Happy fish in little ponds: Testing a reference group model of achievement and emotion. Journal of Personality and Social Psychology, 117, 166–185. https://doi.org/10.1037/pspp0000230.
Putwain, D., Becker, S., Symes, W., & Pekrun, R. (2018). Reciprocal relations between students' academic enjoyment, boredom, and achievement over time. Learning and Instruction, 54, 78-81. https://doi.org/10.1016/j.learninstruc.2017.08.004.
Rezaei, A., & Rezaei, M. (2019). Investigating the mediating role of academic boredom in the relationship between teacher teaching quality and social support with math performance in sixth grade students. Master Thesis, Faculty of Humanities, Department of Psychology, Islamic Azad University of Arsanjan. [In Persian]
Schukajlow, S., & Rakoczy, K. (2016). The power of emotions: Can enjoyment and boredom explain the impact of individual preconditions and teaching methods on interest and performance in mathematics? Learning and Instruction, 44 (2016), 117-127. http://dx.doi.org/10.1016/j. learninstruc.2016.05.001
Schrader, F. W. (2014). Lehrer als Diagnostiker [Teacher as diagnosticians]. In E. Terhart, H. Bennewitz, & M. Rothland (Eds.). Handbuch der Forschung zum Lehrerberuf  [Handbook of  research on the teaching profession] (pp.865-882). (2nd ed.). Munster: Waxmann.
Schutz, P. A., & Pekrun, R. (Eds.). (2007). Educational psychology series: Emotion in education. San Diego, CA: Academic Press.
Spicuzza, R., Ysseldyke, J., Lemkuil, A., Kosciolek, S., Boys, C., Teelucksingh, E. (2001). Effects of curriculum-based monitoring on classroom instruction and math achievement. Journal of School Psychology, 39, 521-542.
Staub, F. C. (2007). Mathe matics Classroom Cultures: Methodological and the Oretical Issues. International Journal of Educational Resarch, 46, 319-326.
Sudkamp, A., Kaiser, J., & Moller, J. (2012). Accuracy of teachers' judgments of students' academic achievement: A meta-analysis. Journal of Educational Psychology, 104(3), 743-762. http://dx.doi.org /10.1037/ a002 7627.
Sulik, M. J., Finch, J. E., & Obradovic, J. (2020).  Moving beyond executive functions: Challenge preference as a predictor of academic achievement in elementary school. Journal of Experimental Child Psychology, 198, 104-883.
Thiede, K. W., Brendefur, J. L., Carney, M. B., Champion, J., Turner, L., Stewart, R., & Osguthorpe, R. D. (2018). Improving the accuracy of teachers’ judgments of student learning. Teaching and Teacher Education, 76, 106-115. https://doi. org/10.1016/j.tate .2018.08.004.
Urhahne, D., & Wijnia, L. (2021). A review on the accuracy of teacher  judgments. Educational Research Review, 32, 100-374. https://doi.org/10.1016/ j.edurev. 20 20.100374.
Vidovich, L., Fourie, M., Van der Westhuizen, L., Alt, H., & Holtzhausen, S. (2000). Quality teaching and learning in Australian and South African universities: comparing policies and practices. Compare, 30(2), 193-209.
Weijer-Bergsma, E. V., & Sanne, H.G. V. (2021). Why and for whom does personalizing math problems enhance performance? Testing the mediation of enjoyment and cognitive load at different ability levels. Learning and Individual Differences, 87(2021), 101-982.
Westphal, A., Kretschmann, J., Gronostaj, A., & Vock, M. (2018). More enjoyment, less anxiety and boredom: How achievement emotions relate to academic self-concept and teachers' diagnostic skills. Learning and Individual Differences, 62, 108-117.
ZabihNejad Arabi, F., Salehi omran, E., & Mirarab Razi, R. (2019). Investigating the quality of teachers teaching and students academic performance in the new and old curriculum of third grade mathematics. Master Thesis of Educational Sciences, Faculty of Humanities and Social Sciences, Mazandaran University. [In Persian]